An objective-based stochastic framework for manipulation planning
نویسندگان
چکیده
We consider the problem of determining robot manipulation plans when sensing and control uncertainties are specified as conditional probability densities. Traditional approaches are usually based on worst-case error analysis in a methodology known as preimage backchaining. We have developed a general framework for determining sensor-based robot plans by blending ideas from stocbastic optimal control and dynamic game theory with traditional preimage backchaining concepts. We argue that the consideration of a precise loss (or performance) functional is crucial to determining and evaluating manipulation plans in a probabilistic setting. We consequently introduce a stochastic, performance preimage that generalizes previous preimage notions. We also present some optimal strategies for planar manipulation tasks that were computed by a dynamic programming-based algorithm.
منابع مشابه
Integrated Inspection Planning and Preventive Maintenance for a Markov Deteriorating System Under Scenario-based Demand Uncertainty
In this paper, a single-product, single-machine system under Markovian deterioration of machine condition and demand uncertainty is studied. The objective is to find the optimal intervals for inspection and preventive maintenance activities in a condition-based maintenance planning with discrete monitoring framework. At first, a stochastic dynamic programming model whose state variable is the ...
متن کاملA multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کاملMedium Term Hydroelectric Production Planning - A Multistage Stochastic Optimization Model
Multistage stochastic programming is a key technology for making decisions over time in an uncertain environment. One of the promising areas in which this technology is implementable, is medium term planning of electricity production and trading where decision makers are typically faced with uncertain parameters (such as future demands and market prices) that can be described by stochastic proc...
متن کاملLoss Reduction in a Probabilistic Approach for Optimal Planning of Renewable Resources
Clean and sustainable renewable energy technology is going to take responsibility of energy supply in electrical power systems. Using renewable sources improve the environment and reduce dependence on oil and other fossil fuels. In distribution power system, utilizing of wind and solar DGs comprises some advantages; consist of loss and emission reduction, and also improvement of voltage profile...
متن کاملSolving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty.In this paper, we focus on multi-objective linear programmingproblems in which the coefficients of constraints and the righthand side vector are fuzzy random variables. There are several methodsin the literature that convert this problem to a stochastic or<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994